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A B S T R A C T

Fuel cells (FCs) have attracted significant interest due to their versatile applications, but modeling their nonlinear
behavior is challenging. This research proposes an Enhanced Artificial Hummingbird Algorithm (EAHA) to
identify the seven unknown parameters of proton exchange membrane fuel cell (PEMFC) stacks using their
experimental data. The goal is to accurately predict the current/voltage (I/V) curves by minimizing a cost
function defined as the sum of squared differences between measured data points and model estimates. The
EAHA combines several territorial foraging techniques with a linear regulation mechanism. Its performance is
compared to the conventional Artificial Hummingbird Algorithm (AHA) using three common PEMFC modules.
Additionally, a comparative analysis is performed against previously published methods and newly developed
optimizers like Particle Swarm Optimizer (PSO), Grasshopper Optimization Algorithm (GOA), Atom Search
Optimization (ASO), Grey Wolf Optimizer (GWO), and parental algorithm i.e., Artificial Hummingbird Algorithm
(AHA). The findings showcase the proposed approach’s efficacy relative to existing methods and state-of-the-art
optimizers. The two models are taken for the checking of reliability and performance of the PEMFC. The results
are also compared with the Non-Parametric tests and it is concluded that the proposed algorithm is far better
than the rest of the compared algorithms in both the models.

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) have emerged as a
promising alternative energy conversion technology due to their high
efficiency, low emissions, and diverse potential applications from
transportation to stationary power generation [1,2]. However, accu-
rately modeling the behavior of PEMFCs is a significant challenge
because of their complex and nonlinear characteristics. Precisely esti-
mating the model parameters is crucial for developing and optimizing
PEMFC systems to enable efficient and reliable operation [3,4].

To enhance the longevity and robustness of PEMFCs, scientists and

researchers are actively pursuing various strategies [5]. These ap-
proaches involve utilizing advanced modeling and simulation tech-
niques that play a key role in understanding the intricate processes
occurring within PEMFCs [6,7]. These techniques harness the power of
computational modeling and precise simulation tools to gain insights
into the complex phenomena happening inside the fuel cell system. By
employing mathematical models, researchers can optimize operational
conditions, predict PEMFC lifespan, and investigate the factors influ-
encing performance and degradation. This approach facilitates a thor-
ough exploration of various operational and design parameters, leading
to improvements in PEMFC durability and overall performance [8]. One
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notable application highlighting the potential of these advanced
modeling techniques is integrating PEMFCs as the primary power source
within a combined cooling, heating, and power system while simulta-
neously incorporating a heat recovery system.

The key to generating accurate simulations of PEMFCs lies in the
parameter identification procedure, which involves selecting crucial
parameters that characterize the behavior and operation of the PEMFC
device [9]. Mathematical frameworks are used to predict the operation
of the fuel cell, with the governing parameters specified based on
well-established physical and electrochemical principles. To adjust the
unidentified model variables to match experimental data, several
parameter estimation methods are employed [10]. These techniques aim
to minimize the difference between observed data and model pre-
dictions by iteratively changing the values of the parameters. Numerical
modeling begins by formulating equation-based descriptions of the
physical and electrochemical processes occurring inside the PEMFC.
Partial differential equations are commonly utilized within this frame-
work to express the conservation laws governing electrochemical re-
actions, mass transfer, momentum, energy, charge transfer, and other
transport phenomena [11,12].

In recent years, the field of model parameter estimation for PEMFCs
has seen significant advancements driven by the need to overcome the
limitations of traditional modeling approaches and improve prediction
accuracy. Accurate PEMFC modeling allows for a better understanding
of their behavior, optimization of operating conditions, and design of
control strategies to enhance performance.

Over recent decades, the application of soft computing technologies
has gained significant traction in emulating the behavior of proton ex-
change membrane fuel cell (PEMFC) units and enhancing their overall
performance. These advanced frameworks encompass a variety of
techniques, including fuzzy logic rules [13], support vector machines
[14], artificial neural networks [15], and neuro-fuzzy procedures [16].
By leveraging the capabilities of these soft computing methodologies,
researchers have been able to capture and mimic the complex behavior
of PEMFCs, paving the way for improved operational strategies and
performance optimization.

Moreover, in recent years, PEMFC optimization has seen a surge in
the development and implementation of heuristic-based optimizers.
These optimizers are designed to determine the optimal values for the
unknown parameters within PEMFC systems, ultimately enhancing their
efficiency and performance [17]. In this rapidly evolving landscape,
numerous optimization procedures have emerged, each offering unique
advantages and capabilities. Notable examples of these optimization
techniques include the Whale Optimizer (WO) [18], Hybrid Jellyfish
Search Optimizer and Particle Swarm Optimization (HJSOPSO) [19],
Modified Manta Ray Foraging Algorithm (MMRFA) [20], Improved
Artificial Ecosystem Optimizer (IAEO) [21], Slime Mold Optimizer
(SMO) [22], and Flower Pollination Optimizer (FPO) [23]. By
leveraging nature-inspired concepts and computational intelligence,
these algorithms efficiently explore the parameter space of PEMFCs,
enabling the identification of optimal operating conditions and design
configurations.

Beyond established methods, researchers actively investigate new
optimization techniques to improve PEMFC performance and reliability.
This includes a surge of novel algorithms like the Hybrid Marine Pred-
ator and Political Optimizer (HMPPO) [24], Cooperative Barebone
Particle Swarm Optimization (CBPSO) [25], and the Improved Chaotic
Grey Wolf Optimization (ICGWO) [26]. Additionally, researchers
explore algorithms like Elman Neural Networks (ENN) [27], and the
Shuffled Multi-Simplexes Search (SMSS) [28]. Each approach brings
unique strengths, enriching the toolbox for PEMFC optimization.

This research introduces an Enhanced Artificial Hummingbird Al-
gorithm (EAHA) to address these challenges. This method effectively
extracts PEMFC parameters using a memory-saving strategy inspired by
hummingbirds [29]. EAHA tackles the optimization problem of finding
the seven unknown parameters in a PEMFC stack using real-world data.

It combines several search strategies inspired by how hummingbirds
explore their territory [30,31]. These strategies allow the algorithm to
explore different areas of the solution space thoroughly, balancing both
broad exploration and targeted searching [32]. Additionally, a special
mechanism is included to improve the algorithm’s ability to find both
broad and specific solutions [33]. This combined approach enhances the
overall performance of EAHA. The key contributions of this work are:

• Improving the Artificial Hummingbird Algorithm (EAHA) to make it
better at finding unknown settings (parameters) within PEMFC fuel
cell stacks used in real-life situations.

• Validating the effectiveness of the EAHA on real-world PEMFC units
by applying it to two specificmodels: BallardMark V and AVISTA SR-
12.

• To demonstrate the superiority of the EAHA, it will be compared to
established methods like Particle Swarm Optimizer (PSO), Grass-
hopper Optimization Algorithm (GOA), Atom Search Optimization
(ASO), Grey Wolf Optimizer (GWO), and parental algorithm i.e.,
Artificial Hummingbird Algorithm (AHA).

• Ten Benchmark test function is also tested to verify the algorithm.

NOMENCLATURE

Nomenclature

FCs Fuel Cells
EAHA Enhanced Artificial Hummingbird Algorithm
PEMFC Polymer Electrolyte Fuel Cell/Proton Exchange Membrane Fuel Cell
AHA Artificial Hummingbird Algorithm
PSO Particle Swarm Optimizer
GOA Grasshopper Optimization Algorithm
ASO Atom Search Optimization
GWO Grey Wolf Optimizer
WO Whale Optimizer
HJSOPSO Hybrid Jellyfish Search Optimizer and Particle Swarm Optimizer
MMRFA Modified Manta Ray Foraging Algorithm
IAEO Improved Artificial Ecosystem Optimizer
SMO Slime Mold Optimizer
FPO Flower Pollination Optimizer
HMPPO Hybrid Marine Predator and Political Optimizer
CBPSO Cooperative Barebone Particle Swarm Optimization
ICGWO Improved Chaotic Grey Wolf Optimization
ENN Elman Neural Network
SMSS Shuffled Multi-Simplexes Search
SSE Sum of Squared Error
VTA Visiting Table
SD Standard Deviation
STC Standard Temperature Conditions
AE Absolute Error
Symbol
I/V Current/Voltage
TFC Cell Temperature
PH2 Partial Pressures of H2
PO2 Partial Pressures of O2
IFC FC Current
Rm Membrane Resistance
Rc Contact Resistance
ρm Membrane’s Resistivity
l Membrane Thickness
Am Active Area of The Cell
J Real Current Density
λ Membrane Water Content
β Maximum Current Density
Jmax Constant Coefficient
Ncells Series of Cells
Vstack Stack Voltage
Vactual Actual Experiment Voltage
Vi Computed Model Voltage
N Number of Data Points
R1 Random Point
LL and UL Boundaries of The Landscape
c Territorial Parameter

(continued on next page)
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(continued )

Nomenclature

Gworst Food Source with The Lowest Nectar Refill Rate
t Current Iteration
tM Maximum Number of Iterations

2. PEMFCS’ modelling and problem formulation

PEMFC modeling uses mathematical equations and computer simu-
lations to understand the chemical and electrical processes within the
fuel cell. The PEMFC schematic representation is shown in Fig. 1.

PEMFCs experience voltage drops due to several factors:

• Activation losses: When the fuel cell starts operating (low load), slow
initial reactions cause a rapid voltage drop.

• Ohmic losses: As the current increases, resistance to the flow of
protons and electrons leads to a gradual voltage decline.

• Concentration losses: High power demands (heavy load) cause water
buildup, reducing reactant concentration and leading to a significant
voltage drop.

These voltage drops, collectively contributing to the overall voltage
loss in the fuel cell, significantly impact the performance and efficiency
of the system. Therefore, it is crucial to understand and minimize these
voltage losses to enhance the performance of PEMFCs. Scientists and
engineers employ various techniques to achieve this goal, such as
catalyst development, improvements in flow field designs, and en-
hancements in reactant gas management.

Accordingly, Equation (1) may be used to represent the PEMFC ter-
minal voltage:

VFC =ENernest − vact − vohm − vconc (1)

For temperatures that operate below 100oC, the reversible open-
circuit voltage is represented by ENernest, which may be computed from
Equation (2).

ENernest =1.229 − 8.5×10− 4×(TFC − 298.15)+4.3085× 10− 5 ×TFC

× ln
(
PH2

̅̅̅̅̅̅̅
PO2

√ )

(2)

where TFC is the cell temperature (K) and PH2 and PO2 denote the partial
pressures of H2 and O2, correspondingly.

According to Equation (3), the activation voltage loss (vact) is

approximated.

vact = −
[
ξ1 +(ξ2 ×TFC)+ (ξ3×TFC × ln(CO2 ))+

(
ξ4 ×TFC × ln

(
Ifc
))]

(3)

Where the FC current is defined as IFC, andmake use of the coefficients ξ1
to ξ4. CO2 and CH2 and indicate the oxygen concentration (mol/cm3),
which has the following definitions as shown in Equation (4) and
Equation (5):

CO2 =
PO2

5.08× 106
× exp

(
498
TFC

)

(4)

CH2 =
PH2

1.09× 106
× exp

(
− 77
TFC

)

(5)

The vohm is defined as follows and is calculated using the FC’s
equivalent resistance as shown in Equation (6):

vohm = IFC × (Rm +Rc) (6)

Where Rm and Rc stand for the membrane resistance and the contact
resistance, accordingly. Equation (7) and Equation (8) can be used to
determine the Rm.

Rm =
ρm × l
MA

(7)

ρm =
181.6×

[
1+ 0.03× J + 0.062× J2.5 × (TFC/303)2

]

[λ − 0.634 − 3× J] × exp(4.18×(TFC − 303)/Tfc)
(8)

Where ρm, l, Am, J and λ indicate, accordingly, the membrane’s re-
sistivity (Ω.cm), membrane thickness (cm), active area of the cell (cm2),
real current density (A/cm2), and membrane water content.

The formula Equation (9) can be utilized for estimating the vconc.

vconc = − β × ln(1 − J / Jmax) (9)

Where β indicates the maximum current density (A/cm2) and Jmax sig-
nifies a constant coefficient.

The PEMFC stack is often made up of a series of cells (Ncells), and the
stack voltage is determined (Vstack) as shown in Equation (10):

Vstack =Ncells ×VFC =Ncells × (ENernest − vact − vohm − vconc) (10)

By using the previously described equation while assuming that all of

Fig. 1. Schematic representation of PEMFC.
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the cells behave uniformly and that the resistors that link them are
disregarded.

Seven unknown variables (ξ1 to ξ4, λ, and β) need to be determined
to fully define the mathematical model based on electrochemistry. An
iterative process involving refinement, optimization, and validation is
used to estimate these parameters in Mann’s model [34]. To achieve
accurate and dependable parameter values that reflect real-world
PEMFC behavior, a combination of experimental data, computer
modeling, and optimization techniques is crucial. This applies not only
to Mann’s model but also to any mathematical model. In essence,
parameter optimization aims to find the values that minimize the gap
between the model’s predictions and actual experimental results.

2.1. Problem formulation

This paper proposes a method to improve the accuracy of a PEMFC
model by aligning its predicted output voltage with real-world mea-
surements. The model uses mathematical formulas and known param-
eters to predict the voltage for any given current density. To achieve
better alignment, a proposed algorithm is employed. The effectiveness of
this approach is evaluated by comparing the predicted voltage with
measured voltage data using the Sum of Squared Error (SSE) metric.
Equation (11) details the objective function used in this evaluation.

SSE=MIN

(

F=
∑N

i=1
(Vactual − Vi)2

)

(11)

Where, actual experiment voltage is denoted by Vactual, computed model
voltage is denoted by Vi, and N is denoted as the number of data points.

3. Proposed algorithm

3.1. Developed EAHA

The AHA algorithm, inspired by how hummingbirds remember food
sources [29], is a powerful optimization technique. This section in-
troduces an improved version of AHA, called EAHA, which can find the
unknown properties of a solar diode. Imagine a group of hummingbirds,
each with its favorite feeding spot. Each hummingbird remembers the
exact location and how quickly its nectar supply refills. They also recall
how long it takes to fly back and forth. This unique ability allows them to
efficiently find the best food sources. Similarly, EAHA works by simu-
lating a swarm of “virtual hummingbirds.” These “hummingbirds” are
randomly assigned to different potential solutions (like food sources).
They then explore these solutions and remember how good they are (like
how much nectar is available). Over time, the “hummingbirds” focus on
the best solutions, just like real hummingbirds finding the tastiest
nectar.

The mathematical details of this process are described in Equation
(12), where a certain number of “hummingbirds” are randomly assigned
to explore different possibilities.

Gh =R1 ×UL +(1 − R1)× LL h= 1, 2,….gm (12)

Where R1 is a random point within this “food landscape,” ranging from
0 to 1. The limits, LL and UL, mark the boundaries of this landscape. Each
“food source,” denoted by Gh, represents a possible solution for the Solar
PV model. We have several “hummingbirds” (gm) searching for the best
solution.

These “hummingbirds” are like real ones, remembering how long it
takes to revisit a food source. To mimic this, author create a “visiting
table” (VTA) that tracks how often each “hummingbird” visits each
“food source.” This table helps them focus on promising solutions and
avoid wasting time on unproductive ones as shown in Equation (13).

VTAh,j =

{
null if h = j

0 else

j = 1, 2,3…gm, k = 1,2, 3….gm

(13)

Where null signifies that there is no value and VTAk,j shows how many
times the hummingbird (h) skipped the source of nourishment (j).

The hummingbirds in the AHA algorithm searching for the best food
sources. They do this using three different “flying styles":

• Straight Shot (Axial Flight): Like a hummingbird zipping directly to a
flower, the algorithm explores the search space in a straight line,
focusing on a specific direction that seems promising. This helps
them find good solutions quickly (Equation (14) shows how this
works).

• Sideways Hop (Diagonal Flight): Like a hummingbird flitting be-
tween flowers, the algorithm explores areas near promising solutions
but also ventures a bit further out. This helps it find even better so-
lutions without getting stuck in one place (Equation (15) shows the
details).

• Random Wander (Omnidirectional Flight): Like a hummingbird
fluttering around, the algorithm explores the entire search space,
even areas that don’t seem promising at first. This helps it discover
new possibilities and avoid getting trapped in dead ends. (Equation
(16) shows the math behind this). By using these three different
flying styles, the AHA algorithm balances exploring new areas and
focusing on good solutions it already found. This helps it find the best
solution possible.

DF(h) =

{
1 if h = randi(1,Dm)

0 else (14)

DF(h)=

{
1 if h=P(j), j∈ [1,m],P= randperm(m),m∈[2, [r1×(Dm − 2)]+1]
0 else

(15)

DF(h) =1, h = 1, 2……Dm (16)

The artificial hummingbird algorithm (AHA) mimics the three
foraging strategies used by hummingbirds: directed, territorial, and
migratory. In the directed and territorial strategies, one of the flying
skills described in Equations (14)–(16) is randomly selected. When using
the directed strategy, the hummingbird searches for a specific food
source, eventually locating a potential nectar location. This potential
food location is represented by r1, which is a randomized number be-
tween 0 and 1. Dm denotes the number of design variables, which are the
seven unknown parameters being optimized. randi and randperm are
functions that randomly generate integers and integer permutations,
respectively as shown in Equation (17).

Gnh(t+1)=Gh(t)+ a×DF ×
(
Gh(t) − Gh,t arg et(t)

)
(17)

The current position of a food source (h) at time t is denoted by Gh(t),
while the desired or target position is Gh,target(t). The movement towards
the target location follows a Gaussian distribution represented by the
variable a. So in the territorial strategy, the hummingbird explores the
region adjacent to its territory seeking newer food locations based on the
current and desired positions defined above.

The second foraging strategy employed by hummingbirds is territo-
rial foraging. In this strategy, the hummingbird searches for fresher food
sources near the boundaries of its small territory as shown in Equation
(18):

Gnh(t+1)=Gh(t) + c× DF × Gj(t) (18)

Where in c represents a territorial parameter.
The update method of every nutritional source’s site (h) for the two

strategies is shown in the following manner in Equation (19):
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Gh(t + 1) =

{
Gnh(t + 1) if O(Gnh(t + 1)) < O(Gh(t))

Gh(t) else

j = 1, 2, 3…..gm

(19)

The third foraging strategy employed by hummingbirds is migratory
foraging. This strategy is used when food sources are scarce in the
hummingbird’s current area. In migratory foraging, if the hummingbird
is positioned at the food source with the lowest nectar refill rate, rep-
resented by the fitness value O(⋅), it will abandon this source and
migrate to a different randomly selected source in the broader search
space. This migration occurs if the nectar refill amount, i.e. the fitness
value, of the new source exceeds that of the currently available source.
So when resources are scarce locally, the hummingbird migrates to a
more distant, randomly found food location with a higher expected
nectar availability as shown in Equation (20).

Gworst = r × UL + (1 − r) × LL (20)

Gworst represents the food source with the lowest nectar refill rate
among all the sources visited by the flock of hummingbirds. If a hum-
mingbird moves beyond the search space limits, its position is reset to a
random location within the bounds. This constraint handling allows the
algorithm to fully explore the feasible region defined by the minimum
and maximum values along each dimension. A boundary check pro-
cedure needs to be implemented to ensure the hummingbirds stay within
the search space. If any dimension parameter is violated, meaning a
hummingbird flies outside the bounds, the position is returned back
inside the borders in the following Equation (21):

Gh
(d)(t + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

LL(d), if Gj
(d)(t + 1) < LL(d)

UL
(d), if Gj

(d)(t + 1) > UL
(d)

Gh
(d)(t + 1), else

h = 1,2, 3……gm, d = 1, 2,3……Dm

(21)

An important aspect of the AHA is the visiting table, which keeps
track of the food sources visited by each hummingbird. This table allows
each hummingbird to identify its preferred food source that it revisits.
The visiting table shown in Equation (11) is unique for each hum-
mingbird and gets updated over time as new sources are explored. By
retaining memory of the most productive food locations discovered, the
visiting table enables more informed search by guiding the humming-
birds back to high quality nectar sites as shown in Equation 22–24.

VTAh,k =VTAh,k + 1, if k ∕= h&k ∕= t arg et, k = 1, 2, 3,….gm (22)

VTAh,t arg et =0 (23)

VTAh,k = max
L∕=h & L∈gm

(
VTAh,L

)
+1, if k∕= h, k=1, 2,3,….gm (24)

A longer unvisited period in the visiting table indicates a higher
visiting frequency for that food source. This table records the length of
time each source has gone unvisited by a particular hummingbird since
its last visit. So the visiting table tracks when each hummingbird last
visited every food source, enabling the hummingbirds to return
frequently to the most productive nectar locations. The proposed en-
hancements in the EAHA seek to further improve the foraging strategies
and overall performance. The enhanced artificial hummingbird algo-
rithm (EAHA) includes modifications and additional components to
improve on the original AHA. The guided foraging strategy is adapted in
the following key ways as shown in Equation (25):

Gnh(t+1)=Gh,t arg et(t) −
(
DF× a×

[
Gh(t) − Gq(t)

])
(25)

where the locations of the current (h) and random (q) sources of nutri-
tion (h) at time t are denoted by the variables Gh(t) and Gq(t), and q
represents an arbitrary integer value that has the following definition as
shown in Equation (26):

q= randi(1, gm), q ∕= h (26)

The enhancement to the directed foraging strategy guides the search
trajectories away from just the current best solution and towards addi-
tional nearby high quality options. Previously, only the precise position
of the current best was employed. Expanding the neighborhood explo-
ration around other competitive solutions, rather than solely exploiting
the current best location, enables more effective and justified exploit-
ative actions.

The territory forage approach also incorporates the subsequent types
of territorial feeding as shown in Equation (27):

Gnh(t+1)=

⎧
⎨

⎩

Gh(t) × (1+ b× DF)
Gh(t) ×

(
b×

[
1 − Gq(t)

]
× DF + 1

)

Gq(t) ×
(
b×

[
1 − Gq(t)

]
× DF + 1

)

if rand < 1 /3

if 1 /3 < rand < 2 /3

else
(27)

The enhancement to the territorial foraging strategy incorporates
information sharing between neighboring hummingbirds, rather than
having each bird rely solely on its own experience. By exchanging details
about food source locations, hummingbirds can better identify and seek
out potentially undiscovered sources within their nearby territory. This
facilitates more exploratory behavior within their vicinities.

Additionally, a linear tuning mechanism is employed to produce an
adjustable parameter (θ) as shown in equation (28):

θ=
t
tM

(28)

Where t denotes the current iteration number and tM is the maximum
number of iterations. The parameter θ increases linearly over time,
modulating the foraging and exploitation tendencies of the enhanced
algorithm. This gradual linear growth of θ serves to control and balance
the exploration and exploitation behaviors.

Initially, with the territorial strategy in Equation (27), the hum-
mingbirds display 100% exploratory searching. But as the algorithm

Table 1
Benchmark test function.

Name of
Function

Function Range Dimension

f1= Sphere f1(y) =
∑m

j=1
yj2 [-100,100] m = 40

f2 =
Schwefel
2.22

f2(y) =
∑m

j=1

⃒
⃒
⃒yj
⃒
⃒
⃒ +

∏m
j=1

⃒
⃒
⃒yj
⃒
⃒
⃒ [-10,10] m = 40

f3 =
Schwefel
1.2

f3(y) =
∑m

j=1

(∑j
i=1

yi
)2 [-100,100] m = 40

f4 =
Schwefel
2.21

f4(y) = maxj
{⃒
⃒
⃒yj
⃒
⃒
⃒,1≤ j≤ m

}
[-100,100] m = 40

f5 = Rosen-
brock

f5(y) =
∑m

j=1
100

(
yj + 1 − yj2

)2
+

(
yj − 1

)2

[-30,30] m = 40

f6 = Step f6(y) =
∑m

j=1

([
yj + 0.5

])2 [-100,100] m = 40

f7 =
Quartic

f7(y) =
∑m

j=1
jyj4 + randm [0,1] [-128,128] m = 40

f8 =
Schwefel f8(y) =

∑m
j=1

− yj Sin
( ⃒̅̅̅̅̅̅̅

⃒
⃒yj
⃒
⃒
⃒

√ ) [-500,500] m = 40

f9 =
Rastrigin

f9(y) =
∑m

j=1

[
yj2 − 10 Cos

(
2πyj

)
+

10
]

[-5.12,5.12] m = 40

f10 =
Ackley f10(y) = − 20 exp

(

−

0.2
(
1
m
∑m

j=1
yj2
)Λ

0.5
)

−

exp
(
1
m
∑m

j=1
Cos
(
2πyj

))

+ 20+ e

[-32,32] m = 40
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iterates, the exploitative activity guided by the directed strategy in
Equation (25) rises steadily, while the exploration guided by the terri-
torial strategy in Equation (27) diminishes proportionately to the
evolving scale of θ.

4. Results and discussion

In this two section are there, in the first section benchmark test
functions are tested and in the second section an engineering problem is
tested. Both the sections are explained below:

4.1. Benchmark test functions

To assess the effectiveness of the new algorithm, ten benchmark
functions were chosen for testing. Table 1 summarizes these functions.
The first seven (f1-f7) have a single minimum value (uni-modal), while
the last three (f8-f10) have multiple minimum values (multi-modal). All
functions have 40 variables. The performance of the new enhanced al-
gorithm is compared against established optimization algorithms: Par-
ticle Swarm Optimization (PSO), Grasshopper Optimization Algorithm
(GOA), Atom Search Optimization (ASO), Artificial Hummingbird Al-
gorithm (AHA), and Grey Wolf Optimizer (GWO). All algorithms were
evaluated for the same number of function calls (Max NFEs = 1000)
across the ten benchmark functions. Each algorithm was run indepen-
dently 40 times and all codes were implemented in MATLAB 2018b.

Tables 2(a) and Table 2(b) displays the average (mean) and SD
(standard deviation) of the results obtained by each algorithm on the ten
benchmark functions. Based on Table 2, the proposed algorithm appears
to outperform the compared algorithms. This is evident from proposed
algorithm achieving consistently better mean and standard deviation
values across all ten test functions. Benchmark functions provide a
standardized way to assess the effectiveness of new algorithms. In this
case, the results suggest that proposed algorithm demonstrates better
convergence speed, robustness, precision, and overall performance
compared to the established algorithms.

4.2. Engineering problem

4.2.1. Parameter extraction of PEMFC
This section further investigates proposed algorithm performance by

applying it to extract parameters for two different PEMFC models.
Table 3 details the allowable range for each parameter in both models.
Table 4 presents the data used for parameter estimation. To assess
proposed algorithm effectiveness, it is compared against established
optimization algorithms: Particle Swarm Optimization (PSO), Grass-
hopper Optimization Algorithm (GOA), Atom Search Optimization
(ASO), Artificial Hummingbird Algorithm (AHA), and Grey Wolf

Table 2 (a)
Statistical results of benchmark test functions.

Algorithms f1 f2 f3 f4 f5

PSO MEAN 6.76E+00 1.84E+01 2.01E+04 2.98E+01 9.46E+03
SD 4.67E+00 3.23E+01 8.79E+03 2.60E+01 1.21E+04

GOA MEAN 2.24E-01 1.21E-12 2.94E+03 1.54E+01 2.59E+03
SD 7.57E-02 2.74E-13 1.56E+03 5.08E+00 2.85E+03

ASO MEAN 3.97E-25 2.76E-30 3.44E-18 7.79E-01 2.60E+00
SD 2.93E-25 5.28E-30 4.62E-18 3.23E-01 3.28E-01

GWO MEAN 1.84E-65 1.64E-38 1.56E-23 2.01E-16 2.62E+01
SD 2.69E-65 1.51E-38 1.23E-23 1.23E-16 7.28E-01

AHA MEAN 7.71E-193 1.45E-99 7.18E-146 1.41E-92 2.68E+01
SD 0 3.5E-99 2.3E-145 4.04E-92 1.66E-01

Proposed Algorithm MEAN 0 2.57E-109 0 3.74E-116 1.34E-03
SD 0 4.5E-109 0 5.9E-132 2.17E-03

Table 2 (b)
Statistical results of benchmark test functions.

Algorithms f6 f7 f8 f9 f10

PSO MEAN 3.07E+01 6.29E-02 − 6.13E+02 1.15E+02 1.17E+01
SD 1.30E+01 2.95E-02 9.48E+01 3.39E+01 1.00E+01

GOA MEAN 2.75E-01 4.69E-02 − 5.95E+03 1.08E+02 1.05E+00
SD 2.49E-01 2.44E-02 7.90E+02 1.71E+01 7.05E-01

ASO MEAN 1.13E-02 4.93E-03 − 1.10E+04 7.73E+01 7.61E-13
SD 1.00E-02 2.18E-03 8.07E+02 2.22E+01 3.32E-13

GWO MEAN 1.01E-03 5.20E-04 − 2.55E+03 3.85E+01 1.51E-14
SD 3.32E-04 4.62E-04 2.38E+02 7.52E+00 3.33E-30

AHA MEAN 4.36E-05 4.70E-04 − 7.43E+03 5.07E+00 8.88E-15
SD 7.32E-05 2.08E-04 6.62E+02 1.44E+00 0

Proposed Algorithm MEAN 3.06E-25 5.66E-05 − 1.26E+04 0 8.88E-17
SD 1.44E-25 2.89E-05 6.07E-02 0 0

Table 3
Parameter search range.

Parameter Lower bound Upper bound

ξ1 − 1.1997 − 0.08532
ξ2*10

¡3 0.8 6.00
ξ3*10

¡5 3.60 9.80
ξ4*10

¡4 − 2.60 − 0.954
λ 10.00 24.00
RC*10¡4 1.00 8.00
b 0.0136 0.5

Table 4
Data sheet for the parameter estimation.

Model Ballard Mark V Avista SR-12

n 35 48
A [cm2] 50.6 62.5
l [um] 178 25
Jmax [A/cm2] 1.5 0.672
PH2 [bar] 1 1.47628
PO2 [bar] 1 0.2095
Power [W] 1000 500
T [K] 343.15 323.15
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Optimizer (GWO). Setting the same limit for function evaluations (Max
NFEs = 1000) for all algorithms across both models. Using a population
size of 50 for each algorithm. Running each algorithm independently 40
times and implementing all codes in MATLAB 2018b.

4.2.2. Analysis of solution accuracy
Tables 5 and 6 present the best-found parameters and their corre-

sponding Sum of Squared Errors (SSE) for the Ballard Mark V and Avista
SR-12 PEMFC models, respectively. These results were obtained under
standard temperature conditions (STC). An analysis of Tables 5 and 6
reveals that the proposed algorithm consistently achieves the lowest SSE
values compared to the other algorithms. This indicates that proposed
algorithm finds parameter sets that better match the experimental data
for both PEMFC models. Further confirmation of proposed algorithm
effectiveness comes from the statistical results presented in Tables 7 and
8, also obtained under STC. These tables and Fig. 2 suggest that pro-
posed algorithm generally performs better than the other algorithms
across various statistical metrics.

Table 5
Parameter estimation of PEMFC model of Ballard mark V.

Parameter/Algorithms ξ1 ξ2 ξ3 ξ4 λ RC b SSE

PSO − 1.177 0.001 0.00003 − 0.00026 11.038 0.0001 0.0136 1.20E-02
GOA − 1.173 0.001 3.63E-05 − 0.00023 10 0.0001 0.0144 1.02E-03
ASO − 1.199 0.002 0.00003 − 0.00026 10 0.0001 0.0247 1.13E-04
GWO − 1.199 0.002 4.36E-05 − 0.00026 12.983 0.0002 0.1787 1.06E-04
AHA − 1.179 0.001 3.85E-05 − 0.00026 10.013 0.0001 0.0241 1.18E-08
Proposed Algorithm − 1.168 0.001 4.51E-05 − 0.00025 10.004 0.0002 0.0204 1.93E-10

Table 6
Parameter estimation of PEMFC model of Avista SR-12.

Parameter/Algorithms ξ1 ξ2 ξ3 ξ4 λ RC b SSE

PSO − 0.907 0.001 0.00009 − 0.0002 10 0.0001 0.0136 3.76E+00
GOA − 1.191 0.001 6.84E-05 − 0.0002 13.720 0.0001 0.0655 1.00E+00
ASO − 0.997 0.001 9.06E-05 − 0.0002 11.326 0.0002 0.1505 8.82E-01
GWO − 1.030 0.001 9.58E-05 − 0.0002 10.180 0.0001 0.0138 8.21E-05
AHA − 0.922 0.001 9.53E-05 − 0.0002 10.232 0.0001 0.0143 7.94E-12
Proposed Algorithm − 1.127 0.001 6.28E-05 − 0.0002 13.757 0.0003 0.1647 3.89E-15

Table 7
Statistical results of PEMFC Model of Ballard Mark V.

Algorithms Minimum Average Maximum Mean S.D Error

PSO 1.20E-02 2.30E-
02

5.89E-02 2.30E-
02

1.38E-
02

SSE

GOA 1.02E-03 1.37E-
03

1.84E-03 1.37E-
03

2.68E-
04

ASO 1.13E-04 1.54E-
04

2.03E-04 1.54E-
04

3.39E-
05

GWO 1.06E-04 1.73E-
04

2.95E-04 1.73E-
04

6.78E-
05

AHA 1.18E-08 3.09E-
08

7.64E-08 3.09E-
08

2.21E-
08

Proposed
Algorithm

1.93E-10 4.08E-
10

9.44E-10 4.08E-
10

2.58E-
10

Table 8
Statistical results of PEMFC Model of Avista SR-12.

Algorithms Minimum Average Maximum Mean S.D Error

PSO 3.76E+00 5.97E+00 7.54E+00 5.97E+00 1.53E+00 SSE
GOA 1.00E+00 1.17E+00 1.42E+00 1.17E+00 1.52E-01
ASO 8.82E-01 9.33E-01 9.95E-01 9.33E-01 3.88E-02
GWO 8.21E-05 8.84E-05 9.85E-05 8.84E-05 6.37E-06
AHA 7.94E-12 7.99E-12 8.03E-12 7.99E-12 4.29E-14
Proposed Algorithm 3.89E-15 3.97E-15 4.04E-15 3.97E-15 4.85E-17

Fig. 2. SSE of both models.

Fig. 3. Computational time of both models.
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4.2.3. Convergence analysis
Researchers compared the effectiveness of different optimization

algorithms for proposed algorithm computations. From Table 9 and
Fig. 3, it is clear that the proposed algorithm is far better than the
parental algorithm as well as compared algorithms. The results
demonstrate that the proposed algorithm converges significantly faster
than the other compared algorithms.

Extracting the PEMFC model parameters using proposed algorithm
allows for straightforward determination of the output voltage and
power at various current levels. This accuracy is further supported by
the data presented. Tables 10 and 11 show the measured output voltage,
power, and absolute error (AE) for both models. Additionally, Figs. 4-7
illustrate the Voltage-Current (V–I) and Power-Current (P–I) curves. An
analysis of these tables and figures suggests that proposed algorithm
achieves superior performance and accuracy compared to the other
tested algorithms for both PEMFC models.

4.2.4. Statistics analysis and robustness
The paragraph evaluates the performance of the proposed algorithm

against other optimization algorithms, such as Particle Swarm Optimi-
zation (PSO), Grasshopper Optimization Algorithm (GOA), Atom Search
Optimization (ASO), Artificial Hummingbird Algorithm (AHA), and
Grey Wolf Optimizer (GWO). The evaluation was conducted using two
datasets, Ballard Mark V and Avista SR-12, for parameter estimation of
Proton Exchange Membrane Fuel Cell (PEMFC) models. The Friedman
ranking test results, presented in Fig. 8 and Tables 12 and 13, showed
that the proposed algorithm outperformed the other algorithms in terms
of accuracy and precision, securing the top rank for both datasets. The
AHA and GWO algorithms ranked second and third, respectively. To
further validate the proposed algorithm’s performance, the Wilcoxon’s
rank sum non-parametric test and the Kruskal-Wallis non-parametric
test were applied. The Wilcoxon’s rank sum test (Tables 14 and 15)
confirmed the proposed algorithm’s superior performance over the
other algorithms at a 95% significance level. The Kruskal-Wallis test
(Tables 16 and 17) also supported the proposed algorithm’s superiority
by comparing the statistical differences among the algorithms [35–37].
Overall, the results from the various non-parametric tests conclusively
demonstrated that the proposed algorithm exhibited higher precision
and accuracy in parameter estimation of PEMFCmodels compared to the
other evaluated optimization algorithms.

5. Conclusion

This paper proposes a new algorithm, called EAHA, to tackle chal-
lenges in finding the best possible solutions (global optimization) for

Table 9
Computational time (Sec) of both models.

Algorithms Ballard Mark
V

Avista SR-
12

Statistical Analysis

PSO 3.112 3.452 Computational Time
(Sec)GOA 3.002 3.068

ASO 2.854 2.984
GWO 2.154 2.225
AHA 1.547 1.698
Proposed
Algorithm

1.021 1.256

Table 10
Calculated values of voltage, power and absolute error of model Ballard mark V.

Current Measured (A) Voltage Measured (V) Voltage Calculated (V) Absolute Error (Voltage) Power Measured (W) Power Calculated (W) Absolute Error (Power)

5.4 0.92 0.9204 4.00E-04 4.97 4.9689 1.10E-03
10.8 0.88 0.8798 2.00E-04 9.50 9.4999 1.00E-04
16.2 0.85 0.8498 2.00E-04 13.77 13.714 5.60E-02
21.6 0.82 0.8201 1.00E-04 17.71 17.7125 2.50E-03
27.0 0.79 0.7894 6.00E-04 21.96 21.9585 1.50E-03
32.4 0.77 0.7687 1.30E-03 24.95 24.94 1.00E-02
37.8 0.74 0.7401 1.00E-04 27.97 28.001 3.10E-02
43.2 0.72 0.7190 1.00E-03 31.10 31.09 1.00E-02
48.6 0.69 0.6894 6.00E-04 33.53 33.5247 5.30E-03
54.0 0.66 0.6604 4.00E-04 35.64 35.6154 2.46E-02
59.4 0.62 0.6198 2.00E-04 36.83 36.8245 5.50E-03
64.8 0.60 0.6200 2.00E-02 38.88 38.8798 2.00E-04
70.2 0.55 0.5501 1.00E-04 38.61 38.6054 4.60E-03
Sum of AE   2.52E-02   1.52E-01

Table 11
Calculated values of voltage, power and absolute error of model Avista SR-12.

Current Measured (A) Voltage Measured (V) Voltage Calculated (V) Absolute Error (Voltage) Power Measured (W) Power Calculated (W) Absolute Error (Power)

1.004 43.17 43.1698 2.00E-04 43.36 43.3458 1.42E-02
3.166 41.14 41.1354 4.60E-03 130.25 129.9987 2.51E-01
5.019 40.09 39.9989 9.11E-02 201.21 201.2054 4.60E-03
7.027 39.04 38.9939 4.61E-02 274.33 273.9878 3.42E-01
8.958 37.99 37.9784 1.16E-02 340.31 339.9897 3.20E-01
10.97 37.08 37.0412 3.88E-02 406.77 406.7548 1.52E-02
13.05 36.03 36.0254 4.60E-03 470.19 469.8979 2.92E-01
15.06 35.19 35.1547 3.53E-02 529.96 529.9458 1.42E-02
17.07 34.07 34.0574 1.26E-02 581.57 581.5548 1.52E-02
19.07 33.02 33.011 9.00E-03 629.69 629.6898 2.00E-04
21.08 32.04 31.9899 5.01E-02 675.40 675.3596 4.04E-02
23.01 31.20 31.1254 7.46E-02 717.91 717.9087 1.30E-03
24.94 29.80 29.7894 1.06E-02 743.21 743.1987 1.13E-02
26.87 28.96 28.9489 1.11E-02 778.16 778.1452 1.48E-02
28.96 28.12 28.1165 3.50E-03 814.36 814.3259 3.41E-02
30.81 26.3 26.2914 8.60E-03 810.30 809.9856 3.14E-01
32.97 24.06 24.0589 1.10E-03 793.26 793.2458 1.42E-02
34.90 21.40 21.3958 4.20E-03 746.86 746.8549 5.10E-03
Sum of AE   4.18E-01   1.71
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different PEMFC models operating at various temperatures. The author
applied EAHA to two specific PEMFC models: Ballard Mark V and Avista
SR-12. To achieve this, author investigated the mathematical repre-
sentation of the PEMFCs. The following section details the findings
based on the obtained results:

Fig. 4. Ballard mark V V–I characteristics curve.

Fig. 5. Ballard mark V P–I characteristics curve.

Fig. 6. Avista SR-12 V–I characteristics curve.

Fig. 7. Avista SR-12 P–I characteristics curve.

Fig. 8. Friedman Ranking Test of both models.

Table 12
Ballard mark V Friedman ranking test.

Algorithms Friedman Ranking

PSO 6
GOA 5
ASO 4
GWO 3
AHA 2
Proposed Algorithm 1

Table 13
Avista SR-12 Friedman ranking test.

Algorithms Friedman Ranking

PSO 6
GOA 5
ASO 4
GWO 3
AHA 2
Proposed Algorithm 1
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• To validate the effectiveness of the newly developed Enhanced
Artificial Hummingbird Algorithm (EAHA) for PEMFC model
parameter extraction, author first tested it on ten benchmark
functions. The results demonstrated superior performance by
EAHA in terms of both solution accuracy and convergence speed
for these global optimization problems.

• Furthermore, author applied EAHA to extract parameters for
two PEMFCmodels (Ballard Mark V and Avista SR-12) operating
at various temperatures. The resulting I–V and P–I character-
istic curves were analyzed using statistical tests (Friedman
ranking, Wilcoxon rank-sum, Kruskal-Wallis). These tests
confirmed that EAHA achieved equivalent efficiency on both
models compared to other algorithms. Overall, the statistical
findings indicate that EAHA offers improved effectiveness for
parameter extraction in PEMFC models.

5.1. Future scope

This study’s findings suggest that the proposed algorithm has
promising potential for estimating proton exchangemembrane fuel
cell parameters effectively. Notably, its applicability extends
beyond this specific task. The algorithm’s versatility allows its
application to various other energy optimization challenges,
making it a valuable tool for tackling diverse energy-related issues.
Furthermore, its potential application in power systems could
address crucial aspects like optimal distributed generation
configuration, load dispatch, and energy scheduling problems.
Optimizing these areas can potentially lead to improved system
efficiency and successful outcomes.
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Table 14
Ballard Mark V p values for Wilcoxon’s Rank Sum.

Algorithms PSO GOA ASO GWO AHA

Proposed
Algorithm

3.9878E-
13

3.9784E-
13

3.9125E-
13

3.9658E-
13

3.9478E-
13

Table 15
Avista SR-12 p values for Wilcoxon’s Rank Sum.

Algorithms PSO GOA ASO GWO AHA

Proposed
Algorithm

3.8754E-
11

3.8215E-
11

3.8654E-
11

3.8745E-
11

3.8321E-
11

Table 16
Ballard mark V Anova Kruskal-Wallis test.

Source SS df MS Chi-sq Prob > Chi-sq

Columns 441762.1 4 90478.3 148.45 2.50254E-28
Error 32345.3 178 157.2 – –
Total 474107.4 182 – – –

Table 17
Avista SR-12 Anova Kruskal-Wallis test.

Source SS Df MS Chi-sq Prob > Chi-sq

Columns 448745.6 4 93587.3 178.03 7.54360E-38
Error 34657.7 178 254.3 – –
Total 483403.3 182 – – –
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